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Abstract

The critical excitation of a dynamical system is defined as the input excitation with the lowest energy that drives the

system from one specified state to another within a given time span. Critical excitations play an important role in first

passage problems because they are the most probable point in the first passage failure region of the standard Normal

stochastic load space. They may also be used to provide efficient solution of other stochastic analysis problems by means of

asymptotic approximations. Although the solution of critical excitation for linear systems can be obtained through unit

impulse response functions, the case of nonlinear hysteretic systems is still under research. The latter has important

relevance in the study of nonlinear response of structures under severe earthquake loads, where the characteristics of

critical excitations may aid understanding the collapse potential of earthquakes. This paper investigates the critical

excitation of single-degree-of-freedom (sdof) elasto-plastic systems. Through observations on dynamic characteristics, the

critical excitation is parameterized in the time domain that allows for its efficient numerical solution. It is found that, in

addition to resonance phenomenon that is observed in linear systems, a mechanism called ‘boundary criticality’ is

responsible for driving elasto-plastic systems to its target by maximizing the capability of gaining momentum during elastic

loading while avoiding opposing plastic deformations.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Let yðtÞ denote the displacement response of an elasto-plastic system, satisfying the governing equation

€yðtÞ þ 2zo _yðtÞ þ F rðyÞ ¼ f ðtÞ, (1)

where z is the elastic critical damping ratio, o is the elastic circular frequency (in rad/s), f is the excitation and
FrðyÞ is the restoring force. The restoring force is given by o2yðtÞ before first yielding at y ¼ þ=� b0. In the
context of this study, the problem of critical excitation is to find the excitation with minimum ‘energy’ (to be
defined shortly) that drives the response y of the single-degree-of-freedom (sdof) elasto-plastic system from
rest (i.e., yð0Þ ¼ 0, _yð0Þ ¼ 0) to the threshold level bf at a specified time instant tf . The ‘energy’ E of an
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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excitation is defined through its L2-norm,

Eðf Þ ¼
1

2

Z 1
0

f ðtÞ2 dt. (2)

Utilizing critical excitations for solving dynamic problems was independently advocated by Papoulis [1] and
Drenick [2]. Critical excitations are relevant in both deterministic and stochastic problems of vibrations. In the
deterministic context, they are related to the control law with minimum energy that drives a system from one
state to another [3]. In a stochastic context, they are the most probable excitation in the first passage failure
region of the standard Normal load space for systems subjected to white noise excitations. They provide
bounds for maximum response under constraints in the input energy. They have also been used as ‘design
points’ for constructing importance sampling densities for efficient estimation of first passage failure
probabilities (e.g., [4,5]). Elasto-plastic sdof systems, despite their sdof nature, have been frequently studied for
gaining insights into multi-degree-of-freedom (mdof) systems [6–11].

The critical excitation problem can be posed as a constrained optimization problem using Lagrange
multipliers, where the objective function Jðf ; lÞ is minimized with respect to f and l:

Jðf ; lÞ ¼
1

2

Z tf

0

f 2 dtþ l½bf � yðtf Þ� (3)

with y governed by Eq. (1). Note that the elasto-plastic system is causal, i.e., future excitation does not affect
the response in the past or at present. It then follows that the critical excitation will be identically zero for
t4tf , since any nonzero excitation after tf cannot change the response on ½0; tf � but will always imply higher
energy in the excitation and hence a suboptimal configuration. It is therefore sufficient to consider
optimization over the class of excitations for which f ðtÞ � 0 for t4tf . Effectively, this consideration has
reduced the upper limit of the integral in Eq. (3) from 1 to tf .

When the system is linear-elastic, i.e., FrðyÞ � o2y for all y, the critical excitation can be obtained readily using
Calculus of Variation [1,2]. Other studies have been devoted to the linear problem under the context of random
vibrations with constraints in the power spectral density function and with nonstationary characteristics [12–14].

Critical excitations for nonlinear hysteretic systems are much more difficult to obtain than for linear
systems. Most studies focused on sdof systems, but even in this case exact solutions have not been obtained.
When the system in Eq. (1) is elasto-plastic, Calculus of Variation cannot be applied directly because the first
variation of y with respect to f is difficult to obtain in close form. Iyengar [15] studied elastic nonlinear systems
and provided bounds for their maximum response under deterministic and stochastic inputs. Westermo [16]
considered maximizing the input energy density (i.e., work done by excitation per cycle) within the class of
excitations spanned by the displacement (y) and velocity ( _y) response. Approximate periodic solutions were
obtained numerically for the critical response of sdof elasto-plastic systems. The relationship between
resonance frequency and response amplitude was numerically obtained, which exhibited complex behavior
such as multiple critical harmonics not observed in linear systems. Equivalence linearization [17,18] has also
been used for approximate solution in the frequency domain [19–21]. Koo and co-workers [22] recently
showed that for nonlinear elastic systems at sufficiently large first passage time the critical excitation is
identical to one that generates the mirror image of the free-vibration response when the system is released from
the target level. They also applied the result as an approximation for nonlinear-hysteretic systems. It should be
noted that this result also holds for linear-elastic systems and is a consequence of the elastic nature of the
restoring force, in that the behavior is the same regardless of progressing forward or backward in time.

In this work, we obtain the critical excitation of sdof elasto-plastic systems by solving the constrained
optimization problem where the excitation is parameterized in the time domain. The paper is organized as
follows. We first present in Section 2 a general time-domain parametric form of excitations that are candidates
for being a critical excitation. The parameterization scheme considers the time history of excitation as a
sequence of segments according to the time instants at which the response transits between different
characteristic phases (e.g., elastic loading/unloading, plastic loading). The critical excitation problem then
corresponds to optimizing with respect to the number of segments, the discrete parameters (referred as
‘boundary state parameters’) defining the different segments as well as the excitation time history within each
segment. By construction, a single governing equation follows within each segment, and so the optimization of
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the corresponding excitation time history can be solved analytically by Calculus of Variation, the details of
which will be presented in Section 3. The remaining optimization with respect to the boundary state
parameters will be discussed in Section 4, where physical arguments are used to reduce the number of
parameters. For this purpose, we introduce one crucial phenomenon called ‘boundary criticality’, which
describes the tendency of the critical response to touch the elastic/plastic boundary in order to maximize its
velocity to produce large plastic excursions. The recognition of boundary criticality allows further reduction of
the number of boundary state parameters, leading to an efficient numerical scheme for finding the critical
excitation. This will be presented in Section 5. Finally, a numerical study is presented in Section 6 for
investigating the nature of critical excitations.
2. Parametric form of critical excitation

Consider the response y due to some excitation f that is a candidate for critical excitation, as shown in
Fig. 1. The figure has incorporated a number of features about the critical excitation that will be discussed next.

The response starts linear-elastically from rest (O) and reaches its yield displacement b0 at t1 (A), after
which it makes an excursion into the plastic regime, achieving a local maximum (B), and then returns to the
linear-elastic regime again as it decreases with unloading of the restoring force. Subsequently, the response
enters the plastic regime again to make another excursion, and this cycle may repeat until the final threshold
level is reached. For bf 4b0, the first passage point at bf must occur in the plastic regime, since otherwise it
must have undergone elastic unloading from a displacement that is greater than bf , which implies that the first
passage point occurs earlier, leading to a contradiction.

The final phase involves reaching the level bf where it achieves a local maximum at F . Strictly speaking, the
velocity at F is not necessarily zero, since it is not specifically constrained in the problem. However, unless the
failure time is very small compared to the natural period, the amount of overshoot is often insignificant. A
mathematical proof of this statement is provided in Ref. [23]. It is often a good approximation to assume that
the final state has zero velocity.

We have ruled out the possibility that the critical response may excur downward below �b0 into the plastic
regime (here referred as having a ‘negative plastic deformation’), as it is argued in Appendix A that for every
response that has a negative plastic deformation it is always possible to construct another response without
negative plastic deformation that has a smaller energy, making the former always sub-optimal and thus can be
ruled out when the critical excitation is sought.

The response is configured such that the displacement and velocity at the transition points between the
elastic and plastic regime are explicitly parameterized. The advantage of this is that within each segment only
one governing equation applies and hence linear-elastic and plastic phases can be handled separately. The
segments spanned by ti, i ¼ 1; . . . ; n are all linear-elastic. The segments spanned by gi, i ¼ 1; . . . ; n, are plastic,
during which yðtÞ is non-decreasing. For given ti; gi; vi; bi, i ¼ 1; . . . ; n, each segment can be optimized
independently of each other using the Calculus of Variation, since the optimal solution within each segment
only depends on their boundary states (displacement and velocity). This idea in principle reduces the original
nontrivial Calculus of Variation problem into a sequence of standard ones that can be solved readily, which
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Fig. 1. Schematic diagram for critical response.
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will be presented in the next section. Of course, the parameters ti; gi; vi; bi, i ¼ 1; . . . ; n as well as the number of
segments n should be subsequently optimized to yield the critical excitation.

3. Critical excitation for given boundary states

The critical excitation time history within each parameterized segment (linear-elastic or plastic phase) with
given boundary states is derived in this section. The results will be applied frequently in later sections.

3.1. Linear-elastic phase

The critical excitation that drives the system from the state ðyi; viÞ to ðyf ; vf Þ in time tf on the ðy; _yÞ state-
space is derived here. The response y that starts with yð0Þ ¼ yi, _yð0Þ ¼ vi and subjected to excitation f can be
generally expressed as

yðtÞ ¼ yi gðtÞ þ vi hðtÞ þ

Z t

0

hðt� tÞf ðtÞdt, (4)

where

hðtÞ ¼
e�zot

wd

sinodt (5)

is the unit impulse response, being identical to the free vibration response with zero initial displacement and
unit initial velocity; and

gðtÞ ¼ e�zot cosodtþ
zffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p sinodt

 !
(6)

is the free vibration response with unit initial displacement and zero initial velocity. Differentiating Eq. (4)
with respect to t, the velocity response is given by

_yðtÞ ¼ yi _gðtÞ þ vi
_hðtÞ þ

Z t

0

_hðt� tÞf ðtÞdt. (7)

To reach the final state ðyf ; vf Þ with minimum energy, the following objective function should be minimized:

Jðf ;b1;b2Þ ¼
1

2

Z tf

0

f 2 dtþ b1½yf � yðtf Þ� þ b2½vf � _yðtf Þ�, (8)

where b1 and b2 are Lagrange multipliers, yðtf Þ and _yðtf Þ are obtained from Eqs. (4) and (7), respectively. The
first variation of J with respect to f is

dJ ¼

Z tf

0

f df dt� b1dyðtf Þ � b2d _yðtf Þ, (9)

where dyðtf Þ ¼
R tf

0
hðt� tÞdf dt and d _y ¼

R tf

0
_hðt� tÞdf dt. Substituting dyðtf Þ and d _yðtf Þ into Eq. (9) and

requiring dJ ¼ 0 to hold for all arbitrary df yields the critical excitation

f �ðtÞ ¼ b1hðtf � tÞ þ b2 _hðtf � tÞ. (10)

Substituting Eq. (10) into Eqs. (4) and (7), and enforcing the final conditions yðtf Þ ¼ bf and _yðtf Þ ¼ vf , yields
the following linear matrix equation for b ¼ ½b1;b2�

T:

Hðtf Þ b ¼ L1ðtf Þ x , (11)

where x ¼ ½yi; vi; yf ; vf �
T is a vector of the boundary state values, and

Hðtf Þ ¼
h11ðtf Þ h12ðtf Þ

h12ðtf Þ h22ðtf Þ

" #
, (12)
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h11ðtf Þ ¼

Z tf

0

h2 dt; h12ðtf Þ ¼

Z tf

0

h _hdt ¼ hðtf Þ
2=2; h22ðtf Þ ¼

Z tf

0

_h
2
dt, (13)

L1ðtf Þ ¼
�gðtf Þ �hðtf Þ 1 0

� _gðtf Þ �
_hðtf Þ 0 1

" #
. (14)

Noted that H is a symmetric matrix with positive entries.
Writing f ¼ ½hðtf � tÞ; _hðtf � tÞ� b and using Eq. (11), the energy of the critical excitation can be obtained as

Eðf �Þ ¼
1

2

Z tf

0

f �
2
dt ¼

1

2
bT H b ¼

1

2
xTLT

1 H�1L1 x (15)

which is a quadratic form of the boundary state vector x.

3.2. Plastic phase

We next consider the critical excitation that drives the response in the plastic regime from ðb0; vÞ to ðb0 þ

b1; 0Þ on the ðy; _yÞ state-space in time s. The governing equation in this case is given by

€yðtÞ þ 2zo _yðtÞ þ o2b0 ¼ f ðtÞ (16)

with the initial conditions yð0Þ ¼ b0 and _yð0Þ ¼ v. Let zðtÞ ¼ yðtÞ � b0, then zðtÞ has the initial conditions
zð0Þ ¼ 0, _zð0Þ ¼ v and satisfies

€zðtÞ þ 2zo_zðtÞ ¼ F ðtÞ, (17)

where F ðtÞ ¼ f ðtÞ � o2b0. The response for z with a unit impulse in F is given by

rðtÞ ¼
1

2zo
ð1� e�2zotÞ. (18)

The solution for z subjected to f can thus be obtained as

zðtÞ ¼ vrðtÞ þ

Z t

0

rðt� tÞF ðtÞdt

¼ vrðtÞ þ

Z t

0

rðt� tÞf ðtÞdt� o2b0

Z t

0

rðtÞdt. ð19Þ

Note that the constraints yðsÞ ¼ b0 þ b1 and _yðsÞ ¼ 0 are equivalent to zðsÞ ¼ b1 and _zðsÞ ¼ 0, and so the
objective function to be minimized is

Jðf ; w1; w2Þ ¼
1

2

Z s

0

f 2 dtþ w1 ½b1 � zðsÞ� þ w2 ½�_zðsÞ�, (20)

where w1 and w2 are Lagrange multipliers. Applying Calculus of Variation yields the critical excitation as

f ðtÞ ¼ w1 rðs� tÞ þ w2 _rðs� tÞ, (21)

where w ¼ ½w1; w2�
T is found from the following matrix equation:

RðsÞ w ¼ LðsÞ x (22)

with x ¼ ½b0; v; b1�
T,

RðsÞ ¼
r11ðsÞ r12ðsÞ

r12ðsÞ r22ðsÞ

" #
, (23)

r11ðsÞ ¼

Z s

0

r2 dt; r12ðsÞ ¼

Z s

0

r _rdt ¼ rðsÞ2=2; r22ðsÞ ¼

Z s

0

_r2 dt (24)
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and

L2ðsÞ ¼
o2
R s

0 rdt �rðsÞ 1

o2 rðsÞ �_rðsÞ 0

" #
. (25)

Note that
R s

0 rdt and _rðsÞ can be obtained analytically. The energy corresponding to the critical excitation in
this case is given by

Eðf �Þ ¼ 1
2
wT R w ¼ 1

2
xTLT

2 R�1L2 x . (26)

The results here take the same form as those in the linear case, which is not surprising because the governing
equation (Eq. (17)) is still linear.
4. Optimization of boundary state parameters

The last section obtains analytical solution for the segment of critical excitation given that the boundary
state parameters, i.e., the length of the segment and its boundary states (displacement and velocity), are
specified. The boundary state parameters should be further optimized in order to yield the critical excitation,
which is considered in this section. It will be seen that the objective function to be minimized can be reduced by
recognizing some qualitative feature of the problem.

Using results from the last section, the critical excitation for the different segments can be obtained for given
values of ti; gi; bi; vi; i ¼ 1; . . . ; n. The resulting energy of the ‘partially’ optimized excitation can be written as

EnðyÞ ¼
Xn

i¼1

Aiðti; gi; vi; biÞ, (27)

where y ¼ ½ti; gi; bi; vi : i ¼ 1; . . . ; n�T collects the set of parameters and Aiðti; gi; vi; biÞ is the energy of the ith
segment of the critical excitation. For i ¼ 1, A1ðt1; g1; v1; b1Þ is given by the sum of Eq. (15) with x ¼

½0; 0; b0; v1�
T and Eq. (26) with x ¼ ½b0; v1; b1�

T. For the subsequent segments, Aið�; �; �; �Þ, i ¼ 2; . . . ; n, are
identical because they correspond to the same problem, namely, going with minimum energy linear-elastically
on the ðy; _yÞ state-space from ðb0; 0Þ to ðb0; viÞ and then plastically from ðb0; viÞ to ðb0 þ b1; 0Þ. Thus, letting
Ai ¼ A2 for all i ¼ 2; . . . ; n, Eq. (27) can be re-written as

EnðyÞ ¼ A1ðt1; g1; v1; b1Þ þ
Xn

i¼2

A2ðti; gi; vi; biÞ. (28)

To obtain the critical excitation for a given n, we need to minimize EnðyÞ with respect to y subject to the
constraints

Pn
i¼1ti þ gi ¼ tf and

Pn
i¼1bi ¼ bf � b0, and the constraint that within each segment the response

must remain within the assumed regime (linear-elastic or plastic). The last requirement is to ensure that the
expressions used for Ai are valid. The objective function to be optimized is given by

Jnðy; l1; l2Þ ¼ A1ðt1; g1; v1; b1Þ þ
Xn

i¼2

A2ðti; gi; vi; biÞ

þ l1 tf �
Xn

i¼1

ti þ gi

 !
þ l2 bp �

Xn

i¼1

bi

 !
, ð29Þ

where l1 and l2 are Lagrange multipliers. The last constraint is not explicitly reflected in the objective function
but may be in principle enforced by checking the resulting solution.

For a given n, there are ð4nþ 2Þ parameters to be optimized. To simplify the optimization problem, it is
noted that for given l1 and l2, the optimality equations for the parameters ti; gi; vi; bi of different segments are
uncoupled, i.e., ti; gi; vi; bi can be solved without knowing the optimal values of tj ; gj ; vj ; bj, jai. In addition,
the optimization problem can be simplified substantially by exploiting some physical features of the critical
excitation problem, which are presented in the following sub-sections.
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4.1. Symmetry

For i ¼ 2; . . . ; n, the parameters ti; gi; vi; bi appear in the objective function in Eq. (29) through the same
function A2. Consequently, they are symmetric, in the sense that the value of J is unaltered when the set of
values fti; gi; vi; big and ftj ; gj ; vj ; bjg ðiajÞ are swapped. Assuming a global optimum exists for the critical
excitation and hence for the set of parameters y, this means that the critical excitation will have
t2 ¼ t3 ¼ � � � ¼ tn; g2 ¼ g3 ¼ � � � ¼ gn; v2 ¼ v3 ¼ � � � ¼ vn; b2 ¼ b3 ¼ � � � ¼ bn. This observation reduces the
dimension of the optimization problem from ð4nþ 2Þ to 4þ 4þ 2 ¼ 10, where the set of parameters to be
optimized is reduced to y ¼ ½t1; g1; v1; b1; t2; g2; v2; b2�

T, l1, and l2. With this consideration, it suffices to
consider the objective function

Jnðy; l1; l2Þ ¼ A1ðt1; g1; v1; b1Þ þ ðn� 1ÞA2ðt2; g2; v2; b2Þ

þ l1½tf � ðt1 þ g1Þ � ðn� 1Þðt2 þ g2Þ�

þ l2½bf � b0 � b1 � ðn� 1Þb2�. ð30Þ

Correspondingly, the candidate critical response is now reduced to one with identical segments starting from
the second segment and onwards.
4.2. Analytical solution for optimal velocity

The optimal value of vi can be obtained analytically in terms of other parameters, because the objective
function is quadratic in vi. From Eq. (30), qJn=qv1 ¼ 0 gives qA1=qv1 ¼ 0, where

A1ðt1; g1; v1; b1Þ ¼
1

2

0

0

b0

v1

2
6664

3
7775
T

L1ðt1Þ
T Hðt1Þ

�1 L1ðt1Þ

0

0

b0

v1

2
6664

3
7775þ 1

2

b0

v1

b1

2
64

3
75
T

L2ðg1Þ
T R�1ðg1ÞL2ðg1Þ

b0

v1

b1

2
64

3
75 (31)

and H, L1, R and L2 are given by Eqs. (12), (14), (23) and (25), respectively. Differentiating Eq. (31) with
respect to v1 gives a linear expression in v1:

qA1

qv1
¼

0

0

0

1

2
6664
3
7775
T

L1ðt1Þ
T Hðt1Þ

�1 L1ðt1Þ

0

0

b0

v1

2
6664

3
7775þ

0

1

0

2
64
3
75
T

L2ðg1Þ
T R�1ðg1ÞL2ðg1Þ

b0

v1

b1

2
64

3
75 (32)

from which the optimal value of v1, denoted by v̂, can be obtained in terms of t1; g1 and b1:

v̂1ðt1; g1; b1Þ ¼ �
P43ðt1Þ þQ21ðg1Þ
P44ðt1Þ þQ22ðg1Þ

b0 �
Q23ðg1Þ

P44ðt1Þ þQ22ðg1Þ
b1, (33)

where P ¼ LT
1 H�1L1, Q ¼ LT

2 R�1L2, and Pij denotes the ði; jÞ-entry of P. Expressions for Pij and Qij are
provided in Appendix B. Using a similar procedure, v̂2 can be obtained in terms of t2; g2 and b2:

v̂2ðt2; g2; b2Þ ¼
P41ðt2Þ � P43ðt2Þ �Q21ðg2Þ

P44ðt2Þ þQ22ðg2Þ
b0 �

Q23ðg2Þ
P44ðt2Þ þQ22ðg2Þ

b2. (34)

The optimal solution for v1 and v2 can be substituted into the objective function Eq. (30) for further
optimization, where the set of parameters to be optimized is reduced to y ¼ ½t1; g1; b1; t2; g2; b2�, l1 and l2 (total
8 parameters).

The optimality condition qA1=qv1 ¼ 0 for v1 in Eq. (32) bears an interesting but nontrivial interpretation.
Appendix C shows that it is equivalent to continuity of the excitation at the moment where the response
transits from the elastic to plastic regime. A counterpart result holds for the optimality condition regarding v2.
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4.3. Boundary criticality

We next argue that, under the usual case of interest where tf is not too small compared to the elastic natural
period T ¼ 2p=o, the critical response always touch the negative elastic–plastic boundary �b0 before
upshooting beyond the level b0. To facilitate the argument we first present a numerical study on the critical
response for n ¼ 1 through numerical optimization where only t1 and g1 need to be optimized because b1 can
be directly obtained from b1 ¼ bf � b0. A sdof system with o ¼ 2p rad=s (1Hz), z ¼ 1% and b0 ¼ 1 is
considered. For a given b1, we obtain the optimal value of t1 by numerically optimizing the objective function

Jðt1Þ ¼ A1ðt1; g1; v̂ðt1; g1; b1Þ; b1Þjg1¼t1�t1 . (35)

Note that the Lagrange multipliers l1 and l2 are not needed because the conditions for the final target level bf

and the failure instant tf have already been enforced. The optimal values of g1 and v are obtained by
g1 ¼ tf � t1 and Eq. (33), respectively. The resulting f � based on patching Eqs. (10) and (21) is optimal only
when the critical response y� is verified to obey the boundary constraints, namely jy�ðtÞj � b0 on ½0; t1� and
_y�ðtÞ � 0 on ½t1; t1 þ g1� because these constraints have not been explicitly enforced during the optimization
process.

Fig. 2 shows f � and y� for different values of b1 ¼ 0; 1; 2; 4 and tf ¼ 0:5; 1; 2 s. For illustration purposes, the
response y� in this figure has been computed based on the linear-elastic Eq. (1) and the plastic Eq. (16) on
½0; t1� and ½t1; t1 þ g1�, respectively. This yields the actual nonlinear response only when the boundary
constraints are satisfied. The levels þ=� b0 that bound the elastic regime are plotted in dashed lines. The
circles mark the transition points from elastic to plastic regime (first circle) and from plastic loading to the
target (second circle). For tf ¼ 0:5 s, y� increases monotonically, passes through the yield displacement level
and finally reaches the target. For tf ¼ 1 s or 2 s, y� makes a trough before upshooting to the target. The
amount of trough increases as b1 increases. For tf ¼ 2 s, it can be easily seen that the trough goes below the
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negative boundary �b0 for all non-zero values of b1. In this case, f � is no longer optimal and y� is no longer
valid because the boundary constraint is violated. Had the response been computed using time-stepping
procedures following an elasto-plastic governing equation, it will undergo negative plastic deformation, and
the target displacement will not be reached. This is a case where the boundary constraint is ‘critical’. The
actual critical response should touch the negative boundary �b0 before upshooting to the target, as shown in
Fig. 3. The efficient computation of the actual critical excitation in this case will be discussed later. Further
numerical results show that similar observations apply to the case when the system starts from ðb0; 0Þ, which is
relevant for the second and subsequent segments. Appendix D gives a further theoretical account for the
occurrence of this phenomenon.
5. Boundary critical excitation

The discussion in the previous section suggests that unless the target level bf is very close to the yield
displacement b0 or the system is required to reach a high target bf within a very small duration tf , the
boundary constraint is active and the critical response touches the negative plastic boundary before
upshooting to the target. We refer this situation as being ‘boundary critical’ and the corresponding critical
excitation as ‘boundary critical excitation’. The boundary constraints can be in principle handled by checking
during numerical optimization, but this strategy is not computationally efficient. By parameterizing the critical
response apriori with a boundary critical mode, the optimization problem can be further simplified.

Fig. 4 shows a candidate critical response time history, assuming it is boundary critical. The response
consists of three basic blocks. The first one is the segment O–A, where the system starts from rest to the level
�b0 with zero velocity. The second segment is A–B–C, where the system upshoots from �b0 at A to þb0 at B
with velocity v1 and later produces a plastic displacement of b1 at C. The third block is C–D, where the
response enters the elastic regime again, going from the positive to the negative extreme. Subsequent phases of
the response are made up by these basic blocks, by virtue of symmetry discussed in the last section. In
particular, A–B–C, D–E–F and G–H–I are identical; so are C–D and F–G.

For a given n, the parameters that define the boundary critical response include t0, t1, s1, t2, v1 and b1. We
next investigate qualitatively their optimal values, designated by a hat. First, b̂1 can be directly obtained from

b̂1 ¼ ðbf � b0Þ=n (36)

and v̂1 can be obtained analytically, as discussed in Section 4.2. For the remaining parameters t0; t1; s1 and t2,
note that the energy of the excitation is given by

Enðt0; t1; s1; t2Þ ¼ E0ðt0Þ þ n E1ðt1; s1Þ þ ðn� 1ÞE2ðt2Þ, (37)

where E0, E1 and E2 are the contributions from O–A, A–B–C and C–D, respectively.
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1
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0

2
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3
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0 h22ðt0Þ

2Dðt0Þ
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E1ðt1; s1Þ ¼
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with v̂1 given by

v̂1ðt1; s1Þ ¼
P41ðt1Þ � P43ðt1Þ �Q21ðs1Þ

P44ðt1Þ þQ22ðs1Þ
b0 �

Q23ðs1Þ

P44ðt1Þ þQ22ðs1Þ
b1, (40)

E2ðt2Þ ¼
1

2

b0

0

�b0

0

2
6664

3
7775
T

L1ðt2Þ
T Hðt2Þ

�1L1ðt2Þ

b0

0

�b0

0

2
6664

3
7775. (41)

The optimal values of t0; t1; s1; t2 should minimize En in Eq. (37) and satisfy the failure time constraint

t0 þ nðt1 þ s1Þ þ ðn� 1Þt2 ¼ tf . (42)

One of the four variables can be eliminated using Eq. (42), giving a 3-D unconstrained optimization problem.
Numerical experiments revealed that there exist multiple optimal solutions to this problem. These solutions
essentially correspond to different locally optimal pairs of t0 and t2. If optimization is done numerically, it is
generally difficult to ascertain whether the converged solution corresponds to the global minimum. Finding all
the locally optimal solutions exhaustively generally requires a lot more computational effort than solving a
convex optimization problem. An iterative procedure is next presented that can find all the local optima (and
hence the global optimum) with much less computational effort by avoiding multi-dimensional search.

Consider treating the time constraint by incorporating a Lagrange multiplier l1 into the objective function:

Jnðt0; t1; s1; t2; l1Þ ¼ E0ðt0Þ þ nE1ðt1; s1Þ þ ðn� 1ÞE2ðt2Þ

þ l1½tf � t0 � n ðt1 þ s1Þ � ðn� 1Þ t2�. ð43Þ

For every l1, consider the set of values t̂0ðl1Þ; t̂1ðl1Þ; ŝ1ðl1Þ; t̂2ðl1Þ that minimizes Jn in Eq. (43). These values do
not necessarily satisfy the time constraint because the given value of l1 is not necessarily optimal. Instead, they
correspond to some value of t̂f ¼ t̂0 þ nðt̂1 þ ŝ1Þ þ ðn� 1Þt̂2 that is generally different from the target tf . Thus,
in principle, the optimal solution can be obtained by iterating l1 until t̂f is sufficiently close to tf . The
advantage of this approach is that the optimal values t̂0; t̂1; ŝ1; t̂2 for each l1 can be obtained easily and
independently of each other: t̂0 by minimizing E0ðt0Þ � l1t0; t̂1; ŝ1 by minimizing E1ðt1; s1Þ � l1ðt1 þ s1Þ; t̂2 by
minimizing E2ðt2Þ � l1t2. This procedure is valid because the objective function in Eq. (43) is just a sum of the
functions minimized. The disadvantage is that an iteration on l1 is required and it is difficult to know in
advance the range of values where the solution of l1 should be sought. We next discuss further properties of l1
that will aid the solution process.
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The optimal values of t̂0; t̂1; ŝ1; t̂2 obtained for each value of l1 satisfy

l1 ¼
d

dt0
E0ðt̂0Þ ¼

q
qt1

E1ðt̂1; ŝ1Þ ¼
q
qs1

E1ðt̂1; ŝ1Þ ¼
d

dt2
E2ðt̂2Þ. (44)

Since E0 is the energy for the system to go from ð0; 0Þ to ðb0; 0Þ at time t0, it is a positive non-increasing
function of t0. This means that l1 ¼ qE0=qt0 is always negative. Also, the smaller the magnitude of l1, the
larger the value of t̂0, and vice versa. When l1! 0�, t0 !1. In the typical case of interest where t0 is not
very small, the optimal value of l1 will be small in magnitude.

The optimal values t̂1 and ŝ1, on the other hand, are relatively insensitive to l1 but are strongly influenced by
b1, because they are largely dominated by resonance effects. Although decreasing the magnitude of l1 still has
a marginal effect on increasing t̂1 and ŝ1, they do not tend to infinity as l1! 0�. Rather, they tend to
nontrivial values that depend on b1. The same is also true for the t̂2, but it tends to T=2 as l1 ! 0� regardless
of b1. This can be reasoned from the fact that when there is no time constraint, the easiest way to go from b0 to
�b0 is to follow roughly the free vibration curve with initial displacement b0 to reach �b0 in a duration equal
to half of the natural period.
5.1. Iterative algorithm for boundary critical excitation

Incorporating the foregoing considerations, the optimal values of t0; t1; s1; t2 for a given n can be found
efficiently in an iterative manner. First, we start with l1 ¼ 0 and obtain t̂1 and ŝ1 by numerically minimizing
(e.g., using simplex search)

~J1ðt1; s1Þ ¼ E1ðt1; s1Þ � l1ðt1 þ s1Þ. (45)

Given such t̂1 and ŝ1, the remaining parameters t0 and t2 have to satisfy the time constraint
t0 þ ðn� 1Þt2 ¼ tf � nðt̂1 þ ŝ1Þ. Using this to express t2 in terms of t0, and substituting into Eq. (43), the
optimal value t̂0 for t0 can be found by minimizing (method to be discussed shortly)

~J0ðt0Þ ¼ E0ðt0Þ þ ðn� 1ÞE2
tf � n ðt̂1 þ ŝ1Þ � t0

n� 1

� �
(46)

on 0ot0 � tf � nðt̂1 þ ŝ1Þ. The optimal value of l1 should be updated by

l1 ¼
qE0ðt̂0Þ

qt0
¼ �

b2
0

2Dðt̂0Þ
2
½h22ðt̂0Þhðt̂0Þ � h12ðt̂0Þ _hðt̂0Þ�

2. (47)

This procedure is iterated until t̂0; t̂1; ŝ1; t̂2 have all converged. Experience shows that it normally requires only
one to two iterations to achieve a relative tolerance of 1%.

The global optimal value of t0 should be obtained by calculating the value of ~J0 for a grid of values of t0 on
½0; tf � n ðt̂1 þ ŝ1Þ� and then selecting the minimizing value. This procedure is able to obtain the global
optimum even in the presence of multiple local optima because the whole feasible range of t0 is exhausted by
the grid values. This strategy rather than local search algorithms should be used because multiple local minima
do exist. For example, Fig. 5 shows the plot of ~J0 versus t0 for an oscillator with o ¼ 2p, z ¼ 1%, b0 ¼ 1
targeted to reach bf ¼ 2 in time tf ¼ 5 s. The curves exhibit multiple minima, especially for intermediate values
of n. Note that determining the optimal solution by selecting among a grid of values is computationally
inexpensive because analytical expression for ~J0 is available and only a one-dimensional grid is involved.

The algorithm presented here allows one to find the parameters that define the critical excitation for every
given n. This process should be performed for n ¼ 1; 2; . . . ; where the energy of the critical excitation given by
Eq. (43) (note that the l1 term is not needed since time constraint is already satisfied) should be monitored for
each n until the minimum is reached, from which the optimal value of n can be obtained.
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5.2. Checking boundary criticality

In theory, three modes of critical excitation can be distinguished, depending on whether O–A–B and/or
C–D–E (and other identical blocks) are boundary critical. These modes are listed in Fig. 6. It should be noted
that Mode BC3 has never been encountered in numerical experiments so far.

The criteria for checking boundary criticality are derived next. For this purpose, we introduce two new
parameters, namely, c1 � 0 and c2 � 0 as shown in Fig. 7. Let Jnðy; l1; l2; c1; c2Þ be the objective function to be
minimized for finding the critical excitation where the time and target constraints are incorporated through the
Lagrange multipliers l1 and l2, respectively; but now it also depends on c1 and c2. The objective function for
Mode BC1 corresponds to Jnðy; l1; l2; b0; b0Þ. For given c1 and c2, let ŷðc1; c2Þ ¼ ½t̂0; t̂1; ŝ1; t̂2; b̂1; v̂1�

T, l̂1ðc1; c2Þ
and l̂2ðc1; c2Þ be the optimal parameters that minimize Jnð�; �; �; c1; c2Þ. As c1 and c2 changes in their 2-D space,
the value of the objective function is traced by Ĵnðc1; c2Þ:

Ĵnðc1; c2Þ ¼ Jnðŷðc1; c2Þ; l̂1ðc1; c2Þ; l̂2ðc1; c2Þ; c1; c2Þ. (48)

If O–A–B and C–D–E are boundary critical, then qĴn=qc1o0 and qĴn=qc2o0 at c1 ¼ c2 ¼ b0. Taking partial
derivatives on Eq. (48) with respect to ci (i ¼ 1; 2),

qĴn

qci

¼
X6
j¼1

qJn

qyj

qŷj

qci

þ
qJn

ql1

ql̂1
qci

þ
qJn

ql2

ql̂2
qci

þ
qJn

qci

, (49)

where qJn=qyj, qJn=ql1, qJn=ql2 are evaluated at y ¼ ŷðc1; c2Þ, l1 ¼ l̂1ðc1; c2Þ, l2 ¼ l̂2ðc1; c2Þ. Since by
definition ŷ, l̂1 and l̂2 minimizes Jnð�; �; �; c1; c2Þ for given c1 and c2, their corresponding partial derivatives are
zero. Consequently,

qĴn

qci

¼
qJn

qci

�����
y¼ŷðc1;c2Þ;l1¼l̂1ðc1;c2Þ;l2¼l̂1ðc1;c2Þ

. (50)
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To obtain qJn=qc1, note that

Jn ¼
1
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2
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3
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T Hðt0Þ
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2
666664
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þ other terms independent of c1 ð51Þ
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and so is a quadratic function of c1. Its derivative can be easily obtained as

qJn

qc1
¼ ½P33ðt0Þ þ P11ðt1Þ� c1 � P13ðt1Þb0 � P14ðt1Þv1, (52)

where Pij can be obtained from Appendix B. Thus, let t�0, t�1, v�1 be the values obtained from the iterative
algorithm assuming Mode BC1, O–A–B is boundary critical if

P14ðt
�
1Þv
�
14½P33ðt

�
0Þ þ P11ðt

�
1Þ � P13ðt

�
1Þ�b0. (53)

For C–D–E, by noting that

Jn ¼
n� 1

2

b0

0

�c2

0

2
666664

3
777775

T

L1ðt2Þ
T Hðt2Þ

�1 L1ðt2Þ
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2
666664

3
777775þ

n� 1

2

�c2

0

b0
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666664

3
777775

T

L1ðt1Þ
T Hðt1Þ

�1 L1ðt1Þ

�c2

0

b0

v2

2
666664

3
777775

þ other terms independent of c2 ð54Þ

and following a similar procedure, it can be shown that C–D–E is boundary critical if

P14ðt
�
1Þv
�
14½P33ðt

�
2Þ þ P11ðt

�
1Þ � P13ðt

�
1Þ � P13ðt

�
2Þ�b0. (55)

The formulas for checking boundary criticality are based on the optimal values of the parameters and so
they provide only sufficient conditions. For example, if qJn=qc1o0 and qJn=qc2o0, then the boundary critical
solution is valid. Otherwise, if qJn=qc140 but qJn=qc2o0, it only suggests that O–A–B is not boundary
critical but C–D–E is. In this case the boundary criticality assumption of O–A–B should be relaxed and a new
solution is obtained assuming Mode BC2. The solution in this case can be efficiently obtained by further
iterations. After that, boundary criticality of C–D–E should be checked again, since the optimal parameters
have changed.

6. Numerical study

Using the proposed method, we determined the critical excitations for an elasto-plastic oscillator with
o ¼ 2p (1Hz), z ¼ 1% and b0 ¼ 1. The results are shown in Fig. 8 for the first passage time tf ¼ 5 s and
different values of target threshold bf ¼ 2; 3; 4. All cases are found to be boundary critical (BC1). The
transition points between different segments are marked with a heavy dot. For discussion purposes, the
transition points for Case (b) (second row) have been named with alphabets, which correspond to the same
points in Fig. 4. The segments B–C, E–F and H–I are in the plastic regime, while the rest are in the linear-
elastic regime.

The initial phase (O–A) of the critical excitation is just the unit impulse response going in reverse time.
During A–B where the response is prepared to upshoot beyond the yield level b0, the critical excitation has a
larger amplitude than that before first yielding. Within B–C where the response is increasing in the plastic
regime, the excitation appears to complete the sinusoidal trend, although in fact it follows an exponential
trend (see Eq. (21)). From C to D where the system returns to the elastic regime again through unloading, the
excitation takes on small values. This is intuitive because during this phase the response can drop primarily by
its own elastic restoring force to its minimum even in the absence of external force. The excitation in this case
only provides the necessary force to compensate for the energy loss due to damping as the system goes from C
to D; otherwise, by damped free vibration the response can only reach down to some level slightly above �b0.

The critical excitation resonates with the system in the elastic regime (A–B) where the system gains
momentum to shoot through the yield level b0. Little energy is spent when the response drops from C to D, as
it can be accomplished primarily by free vibration. The ‘tapering’ of the excitation during C–D is an important
feature that generates a large response efficiently. If the excitation continues to have the same amplitude as the
previous cycle, it will drive the response to have negative plastic deformation that cancels out the previous
plastic response. This feature of critical excitation is unique to hysteretic systems and is not observed in linear
systems. The resulting hysteretic curve exhibits a ‘drift’ type of oscillation [16].
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Fig. 9 shows the critical excitations for tf ¼ 10 and 15 s. It is seen that when the oscillator is given more time
to reach its target, the critical excitation spends more hysteretic cycles to reach its target. Meanwhile, the
duration before first yielding also increases. The results are qualitatively the same as those in Fig. 8.

Fig. 10 shows the energy of the critical excitation for different values of n. Note that the critical excitations
shown in Figs. 8 and 9 correspond to the optimal value of n (marked with a solid circle) that minimizes the
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energy. The lower and upper set of curves correspond to bf ¼ 2 and bf ¼ 4, respectively. The energy curve
always decrease initially when n increases from 1. This is when the initial elastic phase is given the majority of
time span to develop but each subsequent plastic phase has to generate a relatively large plastic displacement
b1 so as to reach the target bf , because n is small.

The inverted triangles in Fig. 10 denote the non-boundary critical cases, where the actual solution is
obtained by further iterations. The non-boundary critical cases all correspond to BC2 (see Fig. 7), as a result
of the fact that n is too large, i.e., too many oscillations, that leaves little time for each oscillation to gain
momentum in the elastic regime, resulting in a sub-optimal configuration. This is also the reason for the
dramatic increase in energy when n is too large, say, when n is approximately equal to the number of natural
periods within tf , i.e., n � tf =ð2p=oÞ. Nevertheless, the non-boundary critical cases are of little practical
significance because they occur after the minimum point is reached and when n is large. If the whole energy
curve is not needed and only the final optimal n is required, one can start with some initial guess for n and then
search locally to reach the optimum. In this case at most one non-boundary critical case will be encountered.

7. Concluding remarks

This study shows that, although resonance is still a primary characteristics of critical excitations for elasto-
plastic systems, a new mechanism called ‘boundary criticality’ accounts for the drift behavior in the critical
response where opposing plastic deformation is avoided. It is not present for linear systems because in that
case no hysteresis is involved.

In contrast to stable linear systems where infinitesimal perturbations in the excitation leads to infinitesimal
perturbations in the response, the response of elasto-plastic systems can be quite sensitive to small infinitesimal
perturbations in the excitation. The latter may cause plastic deformation that can accumulate and change the
subsequent regime (elastic or plastic) through which the response will take place, resulting in perturbations in
the response that is no longer infinitesimal. This has implications in, for example, whether the knowledge of
critical excitations can help construct an efficient importance sampling density for estimating the first passage
probabilities of elasto-plastic systems by importance sampling method [24]. In the linear case, the knowledge
about critical excitations can lead to very efficient estimation of first passage probabilities [4]. Applying the
findings in this study to stochastic analysis of elasto-plastic systems will be a future topic of research.
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The case of mdof system is obviously more complicated that the sdof case. One complication arises from the
fact that different elasto-plastic elements of the mdof system may undergo different phases of motion (elastic
loading/unloading, plastic loading), requiring a far more complicated parameterization scheme in the time
domain (if ever attempted). Nevertheless, the basic characteristics of the critical excitation in the sdof case may
well apply to the mdof case, and this will help constructing approximate (suboptimal) critical excitations for
mdof systems that may suffice in many applications. This will be a further topic of research.
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Appendix A. Critical response has no opposing plastic deformation

This appendix shows that the critical response cannot have opposing plastic deformation. In particular, we
show that for any segment of response that has an opposing plastic deformation, one can always construct a
counterpart that has the same boundary states but it has no opposing plastic deformation and its associated
excitation has less energy. Two cases need to be considered, namely, one that starts from zero initial conditions
and the other one starting from b0 with zero initial velocity. The first case will be considered first; the second
one follows in a similar manner.

Fig. 11 shows the schematic diagrams for the two cases. In both cases, y is the response that has a negative
plastic deformation D at some time instant t1 before reaching the final displacement level b0 þ b1 with zero
velocity at t2. Let E1ðb; tÞ and E2ðb; tÞ denote respectively the smallest energy required to drive the elasto-
plastic system to the displacement level b with zero velocity at time t, from the initial conditions ð0; 0Þ and
ð�b0; 0Þ. It is clear that, for a given t, E1ðb; tÞ is a non-decreasing function of b and so is E2ðb; tÞ for b4b0.

Let EðyÞ be the energy of the excitation corresponding to y in Case 1 (Fig. 11(a)). For any D40,

EðyÞ � E1ðb0 þ D; t1Þ þ E2ðb0 þ b1 þ D; t2 � t1Þ. (56)

Now consider the critical response yc that is to touch the level �b0 at t1 and then upshoot to the level b0 þ b1

at t2. Then

EðycÞ ¼ E1ðb0; t1Þ þ E2ðb0 þ b1; t2 � t1Þ

� E1ðb0 þ D; t1Þ þ E2ðb0 þ b1 þ D; t2 � t1Þ � EðyÞ ð57Þ
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Fig. 11. Schematic diagram for Appendix A.
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and so y is always sub-optimal to yc, i.e., the energy can always be reduced by eliminating negative plastic
deformation.

A similar argument can be applied for Case 2. In this case, for y and yc in Fig. 11(b),

EðyÞ � E2ðb0 þ D; t1Þ þ E2ðb0 þ b1 þ D; t2 � t1Þ

� E2ðb0; t1Þ þ E2ðb0 þ b1; t2 � t1Þ ¼ EðycÞ. ð58Þ

Appendix B. Expressions for P and Q

For PðtÞ ¼ L1ðtÞ
T HðtÞ�1L1ðtÞ, its entries are given by (dependence on t is omitted for brevity)

P11 ¼ ðg
2h22 � 2g _gh12 þ _g2h11Þ=D1; P12 ¼ ðhgh22 � h _gh12 �

_hg h12 þ
_h _gh11Þ=D1,

P13 ¼ ð�gh22 þ _gh12Þ=D1; P14 ¼ ðgh12 � _gh11Þ=D1; P22 ¼ ðh
2h22 � 2h _h h12 þ

_h
2
h11Þ=D1,

P23 ¼ ð�h h22 þ
_hh12Þ=D1; P24 ¼ ðh h12 �

_hh11Þ=D1,

P33 ¼ h22=D1; P34 ¼ �h12=D1; P44 ¼ h11=D1, (59)

where D1 ¼ H
�� �� ¼ h11h22 � h2

12.
For QðtÞ ¼ L2ðtÞ

T RðtÞ�1L2ðtÞ, its entries are given by

Q11 ¼ o4ðr21r22 � 2r1r r12 þ r2r11Þ=D2; Q12 ¼ o2ð�r r1r22 þ r2r12 þ _r r1r12 � _rr r11Þ=D2,

Q13 ¼ �o
2ð�r1r22 þ r r12Þ=D2; Q22 ¼ ðr

2r22 � 2r _r r12 þ _r
2r11Þ=D2,

Q23 ¼ �ðr r22 � _rr12Þ=D2; Q33 ¼ r22=D2, (60)

where D2 ¼ R
�� �� ¼ r11r22 � r212 and r1 ¼

R t

0 rdt.

Appendix C. Interpretation of optimality condition

In this appendix, we show that the optimality condition qA1=qv1 ¼ 0 in Eq. (32) is equivalent to requiring
that the excitation be continuous at the transition point (Eq. (64)).

Let b and w be the vectors of Lagrange multipliers for the consecutive time segments spanned by t1 (linear-
elastic phase) and g1 (plastic loading phase), respectively. Then

b ¼ Hðt1Þ
�1 L1ðt1Þ

0

0

b0

v1

2
6664

3
7775;

0

0

0

1

2
6664
3
7775
T

L1ðt1Þ
T
¼ ½0 1� (61)

and

w ¼ R�1ðg1ÞL2ðg1Þ

b0

v1

b1

2
64

3
75;

0

1

0

2
64
3
75
T

L2ðg1Þ
T
¼ �½rðg1Þ _rðg1Þ�. (62)

Eq. (32) can thus be written as

qA1

qv1
¼ ½0 1� b�½rðg1Þ _rðg1Þ� w . (63)

On the other hand, the critical excitation on the interval spanned by t1 is f �1ðtÞ ¼ ½hðt1 � tÞ; _hðt1 � tÞ� b, and so
f �1ðt1Þ ¼ ½0; 1� b, since hð0Þ ¼ 1 and _hð0Þ ¼ 1. Taking the instant t1 as the origin, the critical excitation on the
interval spanned by g1 is f �2ðtÞ ¼ ½rðg1 � tÞ; _rðg1 � tÞ� w, and so f �2ð0Þ ¼ ½rðg1Þ; _rðg1Þ� w. Substituting these
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relations into Eq. (63) and setting it to zero gives

f �1ðt1Þ ¼ f �2ð0Þ (64)

which means that optimality in v1 requires the critical excitation be continuous at the transition point between
the elastic and plastic regime.

Appendix D. Further discussions on boundary criticality

In this appendix, we give a theoretical account for the occurrence of boundary criticality described in
Section 4.3. Consider the critical excitation in the linear-elastic regime that starts from ð0; 0Þ to ðb0; vÞ. The
critical excitation is given by f ¼ b1hðt� tÞ þ b2 _hðt� tÞ where

b ¼
h11 h12

h12 h22

" #�1
b0

v

� �
¼

1

D

h22 �h12

�h12 h22

" #
b0

v

� �
¼ b

b
b0 þ b

v
v (65)

and D ¼ H
�� �� ¼ h11h22 � h2

12, b
b
¼ ½h22;�h12�

T=D and b
v
¼ ½�h12;�h11�

T=D. The critical response yb (say)
corresponding to b

b
goes from ð0; 0Þ to ð1; 0Þ on the ðy; _yÞ state-space. On the other hand, the critical response

yv (say) corresponding to b
v
goes from ð0; 0Þ to ð0; 1Þ. Fig. 12 shows the time history of yb and yv for different

values of tf . It can be seen that yb increases in an oscillatory manner to its target without overshooting before
tf , i.e., jybðtÞjo1 for all totf . On the other hand, yv can have quite large displacements before tf because only
its final velocity is constrained. Roughly speaking, yb and yv are out of phase, i.e., yb achieves its maximum or
minimum value at approximately the same instant when yv is around zero, and vice versa.

The response corresponding to the critical excitation that drives the system from ð0; 0Þ to ðb0; vÞ is given by

yðtÞ ¼ b0 ybðtÞ þ vyvðtÞ. (66)

It is important to note from Fig. 12 that, shortly before yv achieves its target velocity at tf , it is always
negative. This is the essential cause for why the critical response in Fig. 2 tends to overshoot into the negative
plastic regime before upshooting to ðb0; vÞ. In particular, let t̂ be the time at which yv achieves its last trough.
Then, since yb is approximately out of phase with yv, yðt̂Þ ¼ b0 ybðt̂Þ þ vyvðt̂Þ � vyvðt̂Þ as ybðt̂Þ � 0. Thus, for
sufficiently large v, it can happen that yðt̂Þo� b0, violating the linear-elastic regime constraint.
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